Abstract

We investigate gravitational lensing using a realistic model of disc galaxies. Most of the mass is contained in a large spherical isothermal dark matter halo, but the potential is modified significantly in the core by a gravitationally dominant exponential disc. The method used is adapted from a very general multilens ray-tracing technique developed by Mo¨ller. We investigate the effects of the disc-to-halo mass ratio, the disc scalelength, the disc inclination to the line of sight and the lens redshift on two strong-lensing cross-sections: the cross-section for multiple imaging and the cross-section for large magnifications, in excess of a factor of 10. We find that the multiple-imaging cross-section can be enhanced significantly by an almost edge-on Milky Way disc compared with a singular isothermal sphere (SIS) in individual cases; however, when averaged over all disc inclinations, the cross-section is only increased by about 50 per cent. These results are consistent with other recent work. The presence of a disc, however, increases the inclination-averaged high-magnification cross-section by an order of magnitude compared with a SIS. This result has important implications for magnification bias in future lens surveys, particularly those in the submillimetre waveband, where dust extinction in the lensing galaxy has no effect on the brightness of the images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call