Abstract
We study the strong gravitational lensing in the background of a rotating non-Kerr compact object with a deformed parameter $\epsilon$ and an unbound rotation parameter $a$. We find that the photon sphere radius and the deflection angle depend sharply on the parameters $\epsilon$ and $a$. For the case in which the black hole is more prolate than a Kerr black hole, the photon sphere exists only in the regime $\epsilon\leq\epsilon_{max}$ for prograde photon. The upper limit $\epsilon_{max}$ is a function of the rotation parameter $a$. As $\epsilon>\epsilon_{max}$, the deflection angle of the light ray closing very to the naked singularity is a positive finite value, which is different from those in both the usual Kerr black hole spacetime and in the rotating naked singularity described by Janis-Newman-Winicour metric. For the oblate black hole and the retrograde photon, there does not exist such a threshold value. Modelling the supermassive central object of the Galaxy as a rotating non-Kerr compact object, we estimated the numerical values of the coefficients and observables for gravitational lensing in the strong field limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.