Abstract
We study the existence of (generalized) bounded solutions existing for all times for nonlinear parabolic equations with nonlinear boundary conditions on a domain that is bounded in space and unbounded in time (the entire real line). We give a counterexample which shows that a (weak) maximum principle does not hold in general for linear problems defined on the entire real line in time. We consider a boundedness condition at minus infinity to establish (one-sided) L ∞ - a priori estimates for solutions to linear boundary value problems and derive a weak maximum principle which is valid on the entire real line in time. We then take up the case of nonlinear problems with (possibly) nonlinear boundary conditions. By using comparison techniques, some (delicate) a priori estimates obtained herein, and nonlinear approximation methods, we prove the existence and, in some instances, positivity and uniqueness of strong full bounded solutions existing for all times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.