Abstract

We study the convex hull of the mixed-integer set given by a conic quadratic inequality and indicator variables. Conic quadratic terms are often used to encode uncertainties, while the indicator variables are used to model fixed costs or enforce sparsity in the solutions. We provide the convex hull description of the set under consideration when the continuous variables are unbounded. We propose valid nonlinear inequalities for the bounded case, and show that they describe the convex hull for the two-variable case. All the proposed inequalities are described in the original space of variables, but extended SOCP-representable formulations are also given. We present computational experiments demonstrating the strength of the proposed formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.