Abstract

Multi-element injector configurations, typically comprising numerous small-scale jet nozzles, will be required to enable reliable lean-premixed gas turbine combustion operating with pure hydrogen or high hydrogen content fuels. The integration of large numbers of millimeter-scale injectors in tightly clustered arrays is highly likely to produce peculiar topological states determined by the collective dynamics of strongly interacting premixed hydrogen flames. To understand the influence of inter-element flame interactions in a multi-element nozzle environment, here we experimentally investigate the combustion dynamics of two different pure hydrogen flame ensembles, one relatively coarse array of 293 round jet nozzles, and the other a dense array of 421 nozzles. Measurements of self-induced instability were conducted for both configurations under 60–130 thermal power conditions, in conjunction with phase-synchronized OH PLIF and high-speed OH∗ chemiluminescence emission measurements. We demonstrate that for both cases the characteristic dimension of a single injector element is the main determinant of the fundamental frequency of self-induced pressure oscillations, and that the oscillations are primarily driven by the combination of coherent structure-related flame surface rollup and local extinction/pinch-off. Whereas the coarse injector arrangement exhibits well-organized parallel propagation and deformation of isolated vortical structures, the dense array case manifests strong repulsive interactions between adjacent coherent structures, naturally creating lateral flame surface modulations as well as limited streamwise oscillations. Importantly, collision-induced lateral flame dynamics play a mechanistic role in the substantial growth of higher harmonics in the frequency range of 1–2 kHz, leading to the creation of multiple frequency excitation states of commensurate amplitude, which uniquely define the thermoacoustic state of clustered lean-premixed hydrogen flames.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call