Abstract

Two trinuclear isomeric compounds, [{(Cu(II)(salpn))(Me(CO)Me)}2Dy(III)(NO3)3] (1) and [{Cu(II)(salpn)}2Dy(III)(H2O)(NO3)3]·MeOH (2), along with one polymeric compound, {[{Cu(II)(salpn)}2Dy(III)(NO3)3bpy]·MeOH·H2O}n (3), were synthesized using a metalloligand, [Cu(II)(salpn)], where H2salpn and bpy stand for N,N'-bis(salicylidene)-1,3-propanediamine and 4,4'-bipyridine, respectively. Compounds 1 and 2 were selectively prepared with two solvents: the less polar acetone led to the exclusive crystallization of 1 with a transoid trinuclear architecture, while more polar solvent methanol provided sole construction of 2 with a cisoid trinuclear architecture. Compound 3 was prepared from 1 or 2 after bpy was introduced as a bridge. The Dy and Cu ions are doubly bridged with oxygen atoms, and the core DyO2Cu skeletons are characterized by different "butterfly angles" of 140.9(1)°, 147.1(19)°, and 142.4(2)° for 1, 2, and 3, respectively. We have examined the molecular structures and magnetic properties of 1-3 using high-frequency electron paramagnetic resonance (HF-EPR), magnetization, and magnetic susceptibility techniques. These compounds showed slow magnetization reversal in the measurements of alternating current magnetic susceptibility. We analyzed EPR frequency-field diagrams using an effective spin-Hamiltonian including only one doublet of Dy sublevels and found that the exchange couplings are ferromagnetic in all compounds. The exchange coupling parameters JDy-Cu of 1, 2, and 3 were determined as 2.25 ± 0.05, 1.82 ± 0.04, and 1.79 ± 0.04 K, respectively. These values are larger than those found in previous research using EPR analysis on [Cu(II)(L(A))(C3H6O)Dy(III)(NO3)3] (H2L(A) = N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2,2-dimethylpropane) and [Dy(III)L(B)2(NO3)2{Cu(II)(CH3OH)}2](NO3)(CH3OH) (H2L(B) = 2,6-bis(acetylaceto)pyridine). The present result shows an advantage of doubly oxygen-bridged motifs to built strong ferromagnetic interactions between lanthanide and transition metal ions. We found that the exchange coupling strength is sensitive to the structural parameters such as bond angles, bond lengths, and butterfly angles. Precise determination of the exchange parameters would contribute to development of exchange-coupled 4f-3d heterometallic complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.