Abstract
Abstract We present 0.″15 (1 kpc) resolution ALMA observations of the [C ii] 157.74 μm line and rest-frame 160 μm continuum emission in two z ∼ 3 dusty, star-forming galaxies—ALESS 49.1 and ALESS 57.1, combined with resolved CO (3–2) observations. In both sources, the [C ii] surface brightness distribution is dominated by a compact core ≤1 kpc in radius, a factor of 2–3 smaller than the extent of the CO (3–2) emission. In ALESS 49.1, we find an additional extended (8 kpc radius), low surface brightness [C ii] component. Based on an analysis of mock ALMA observations, the [C ii] and 160 μm continuum surface brightness distributions are inconsistent with a single-Gaussian surface brightness distribution with the same size as the CO (3–2) emission. The [C ii] rotation curves flatten at ≃2 kpc radius, suggesting that the kinematics of the central regions are dominated by a baryonic disk. Both galaxies exhibit a strong [C ii]/far-IR (FIR) deficit on 1 kpc scales, with FIR surface brightness to [C ii]/FIR slope steeper than in local star-forming galaxies. A comparison of the [C ii]/CO (3–2) observations with photodissociation region models suggests a strong far-UV (FUV) radiation field (G 0 ∼ 104) and high gas density (n(H) ∼ 104–105 cm−3) in the central regions of ALESS 49.1 and ALESS 57.1. The most direct interpretation of the pronounced [C ii]/FIR deficit is a thermal saturation of the C+ fine-structure levels at temperatures ≥500 K, driven by the strong FUV field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.