Abstract

AbstractRealizing and manipulating strong light–matter coupling in 2D monolayer semiconductors is of paramount importance in the development of novel photonic devices. Here, it is revealed by numerical simulation that strong coupling between the excitons in a WS2 monolayer and the surface plasmon polaritons propagating on the surface of a thin Au film can be realized when the surface plasmon polaritons are generated via the Kretschmann–Raether configuration. The use of liquid Ga nanoparticles, which exhibit broad scattering spectra in visible light, is proposed to identify the strong exciton–plasmon coupling. It is demonstrated numerically and experimentally that the exciton–plasmon coupling strength, which is manifested in Rabi splitting, can be further enhanced by the in‐plane localization of the electric field provided by liquid Ga nanoparticles. Anti‐crossing of the scattering spectra can be observed by tuning the angle of the incident light and Rabi splitting exceeding 120 meV can be obtained. The results open new horizons for realizing strong exciton‐plasmon coupling in hybrid structures composed of monolayer semiconductors and thin metal films and pave the way for the practical applications of strong light–matter interaction in nanoscale photonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.