Abstract

The reduction of the defect density in quantum wells (QWs) is important to maximize the internal quantum efficiency. We investigate non-radiative recombination in GaInN/GaN single QWs (SQWs) grown on In-free and In-containing so-called underlayers (ULs). The non-radiative lifetime of SQWs increases with increasing UL thickness and decreases exponentially with increasing UL growth temperature. Moreover, the presence of low-temperature UL strongly increases the non-radiative lifetime of SQWs. As non-radiative recombination at threading dislocations is efficiently suppressed by means of V-pits, our results suggest that point defects diffuse from the high temperature buffer layer through the UL into the QW. The resulting point defect density in the QW is strongly influenced by the UL growth conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.