Abstract
In this paper, we define a new flavour of well-composedness, called strong Euler well-composedness. In the general setting of regular cell complexes, a regular cell complex of dimension n is strongly Euler well-composed if the Euler characteristic of the link of each boundary cell is 1, which is the Euler characteristic of an (n-1)-dimensional ball. Working in the particular setting of cubical complexes canonically associated with nD pictures, we formally prove in this paper that strong Euler well-composedness implies digital well-composedness in any dimension nge 2 and that the converse is not true when nge 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.