Abstract

We study the hole binding energy and pairing correlations in the three-band Hubbard model coupled to an apical oxygen phonon, by exact diagonalization and constrained-path Monte Carlo simulations. In the physically relevant charge-transfer regime, we find that the hole binding energy is strongly enhanced by the electron-phonon interaction, which is due to a novel potential-energy-driven pairing mechanism involving reduction of both electronic potential energy and phonon related energy. The enhancement of hole binding energy, in combination with a phonon-induced increase of quasiparticle weight, leads to a dramatic enhancement of the long-range part of $d$-wave pairing correlations. Our results indicate that the apical oxygen phonon plays a significant role in the superconductivity of high-${T}_{c}$ cuprates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.