Abstract

Exposing a thiol-functionalised gold nanoparticle film chemiresistor to methanol in aqueous solution results in only a small electric current response as the thiol ligand/water partition coefficient of methanol is small, leading to only minor swelling of the chemiresistor film. Nevertheless, the current response to methanol can be enhanced if the chemiresistor becomes pre-exposed to a molecule with a large ligand/water partition coefficient P (e.g. octane with Po = 104.3). The large response enhancement is achieved because methanol, when added to an aqueous solution of octane, lowers the large initial partition coefficient of octane. Octane exiting the thiol ligands then leads to strong film shrinkage resulting in a relative current change much greater than the one otherwise induced by methanol alone. This was theoretically modelled for octane and heptane (Ph = 103.6). A strong response enhancement to methanol (>20 times) was observed experimentally by exposure to 2 ppm octane compared to direct testing of methanol in aqueous solution. Besides octane and heptane, molecules with P > 107 (e.g. permethrin) can theoretically be used to provide enhancement factors of several orders of magnitude. For practical reasons, heptane and octane saturate more quickly, thus enabling more rapid detection of methanol than higher P organic molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.