Abstract

Extreme confinement in nanometer-sized channels can alter fluid and ion transport in significant ways, leading to significant water flow enhancement and unusual ion correlation effects. These effects are especially pronounced in carbon nanotube porins (CNTPs) that combine strong confinement in the inner lumen of carbon nanotubes with the high slip flow enhancement due to smooth hydrophobic pore walls. We have studied ion transport and ion selectivity in 1.5 nm diameter CNTPs embedded in lipid membranes using a single nanopore measurement setup. Our data show that CNTPs are weakly cation selective at pH 7.5 and become nonselective at pH 3.0. Ion conductance of CNTPs exhibits an unusual 2/3 power law scaling with the ion concentration at both neutral and acidic pH values. Coupled Navier-Stokes and Poisson-Nernst-Planck simulations and atomistic molecular dynamics simulations reveal that this scaling originates from strong coupling between water and ion transport in these channels. These effects could result in development of a next generation of biomimetic membranes and carbon nanotube-based electroosmotic pumps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.