Abstract

Solid-liquid interfaces display a wealth of emerging phenomena at nanometer scales, which are at the root of their technological applications. While the interfacial structure and chemistry have been intensively explored, the potential coupling between liquid flows and the solid’s electronic degrees of freedom has been broadly overlooked up till now. Despite several reports of electronic currents induced by liquids flowing in various carbon nanostructures, the mechanisms at stake remain controversial. Here, we unveil the molecular mechanisms of interfacial liquid-electron coupling by investigating flow-induced current generation at the nanoscale. We use a tuning fork atomic force microscope to deposit and displace a micrometric liquid droplet on a multilayer graphene sample, and observe an electronic current induced by the droplet displacement. The measured current is several orders of magnitude larger than previously reported for water on carbon, and further boosted by the presence of surface wrinkles on the carbon surface. Our results point to a peculiar momentum transfer mechanism between the fluid molecules and graphene charge carriers, mediated mainly by the solid’s phonon excitations. These findings open new avenues for active control of nanoscale liquid flows through the solid walls’ electronic degrees of freedom.Received 28 June 2022Revised 27 October 2022Accepted 12 January 2023DOI:https://doi.org/10.1103/PhysRevX.13.011020Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasNanofluidicsPhysical SystemsGrapheneCondensed Matter, Materials & Applied Physics

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call