Abstract

The realization of efficient and fully controllable synthesis of single atom catalysts is an exciting frontier, yet still challenging in the modern catalysis field. Here we describe a straightforward high-temperature quenching approach to precisely construct isolated palladium atoms supported over cubic indium oxide, with individual palladium atoms coordinated with four neighboring oxygen atoms. This palladium catalyst achieves exceptional catalytic efficiency in the selective hydrogenation of nitrobenzene to aniline, with more than 99% chemoselectivity under almost 100% conversion. Moreover, it delivers excellent recyclability, anti-CO poisoning ability, storage stability, and substrate tolerance. DFT calculations further reveal that the high catalytic activity stems from the optimized electronic structure and the charge states of palladium atoms in the defect-containing indium oxide. Our findings provide an effective approach to engineering single atom catalysts at the atomic level and open the door to a wide variety of catalytic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.