Abstract

Carbon/molecule/copper molecular electronic junctions were fabricated by metal deposition of copper onto films of various thicknesses of fluorene (FL), biphenyl (BP), and nitrobiphenyl (NBP) covalently bonded to flat, graphitic carbon. A "crossed-wire" junction configuration provided high device yield and good junction reproducibility. Current/voltage characteristics were investigated for 69 junctions with various molecular structures and thicknesses and at several temperatures. The current/voltage curves for all cases studied were nearly symmetric, scan rate independent, repeatable at least thousands of cycles and exhibited negligible hysteresis. Junction conductance was strongly dependent on the dihedral angle between phenyl rings and on the nature of the molecule/copper "contact". Junctions made with NBP showed a decrease in conductivity of a factor of 1300 when the molecular layer thickness increased from 1.6 to 4.5 nm. The slope of ln(i) vs layer thickness for both BP and NBP was weakly dependent on applied voltage and ranged from 0.16 to 0.24 A(-1). These attenuation factors are similar to those observed for similar molecular layers on modified electrodes used to study electrochemical kinetics. All junctions studied showed weak temperature dependence in the range of approximately 325 to 214 K, implying activation barriers in the range of 0.06 to 0.15 eV. The carbon/molecule/copper junction structure provides a robust, reproducible platform for investigations of the dependence of electron transport in molecular junctions on both molecular structure and temperature. Furthermore, the results indicate that junction conductance is a strong function of molecular structure, rather than some artifact resulting from junction fabrication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call