Abstract

A strong edge-colouring of a graph G is a proper edge-colouring such that every path of three edges uses three colours. An induced matching of a graph G is a subset I of edges of G such that the graph induced by the endpoints of I is a matching. In this paper, we prove the NP-completeness of strong 4-, 5-, and 6-edge-colouring and maximum induced matching in some subclasses of subcubic triangle-free planar graphs. We also obtain a tight upper bound for the minimum number of colours in a strong edge-colouring of outerplanar graphs as a function of the maximum degree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.