Abstract

The breaking of electroweak symmetry, and origin of the associated “weak scale”, v weak =1/ 2 2 G F =175 GeV , may be due to a new strong interaction. Theoretical developments over the past decade have led to viable models and mechanisms that are consistent with current experimental data. Many of these schemes feature a privileged role for the top quark, and third generation, and are natural in the context of theories of extra space dimensions at the weak scale. We review various models and their phenomenological implications which will be subject to definitive tests in future collider runs at the Tevatron, and the LHC, and future linear e + e − colliders, as well as sensitive studies of rare processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.