Abstract

Following the idea of the conjecture for semi-infinite programming in a paper by Kortanek and Zhang, recently published in Optimization, in this paper we show that the Fourier–Motzkin elimination is not needed in the study of the strong duality and dual pricing properties for semi-infinite programming. We also prove several new results on the strong duality and dual pricing properties. Specifically, we propose a new subspace, under which the strong duality property holds. We give a necessary and sufficient condition for the dual pricing property to hold under this subspace, which is further used to examine the examples presented in the Basu–Martin–Ryan paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.