Abstract
The paper presents the Strong Discontinuity Approach for the analysis and simulation of strong discontinuities in solids using continuum plasticity models. Kinematics of weak and strong discontinuities are discussed, and a regularized kinematic state of discontinuity is proposed as a mean to model the formation of a strong discontinuity as the collapsed state of a weak discontinuity (with a characteristic bandwidth) induced by a bifurcation of the stress–strain field, which propagates in the solid domain. The analysis of the conditions to induce the bifurcation provides a critical value for the bandwidth at the onset of the weak discontinuity and the direction of propagation. Then a variable bandwidth model is proposed to characterize the transition between the weak and strong discontinuity regimes. Several aspects related to the continuum and, their associated, discrete constitutive equations, the expended power in the formation of the discontinuity and relevant computational details related to the finite element simulations are also discussed. Finally, some representative numerical simulations are shown to illustrate the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.