Abstract
A strong direct product theorem (SDPT) states that solving $n$ instances of a problem requires $\Omega(n)$ times the resources for a single instance, even to achieve success probability $2^{-\epsilon n}$ for a small enough constant $\epsilon>0.$ We prove that quantum communication complexity obeys an SDPT whenever the communication lower bound for a single instance is proved by the generalized discrepancy method, the strongest technique in that model. We prove that quantum query complexity obeys an SDPT whenever the query lower bound for a single instance is proved by the polynomial method, one of the two main techniques in that model. In both models, we prove the corresponding XOR lemmas and threshold direct product theorems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.