Abstract

An important mechanism in spintronics is spin-splitting induced by structure and/or bulk inversion asymmetry. These effects are frequently assumed to depend on two parameters usually denoted by α and β respectively, and α is assumed to be proportional to some average electric field. We here demonstrate that the spatial dependence of the electric field gives very important effects absent in simpler models. These effects are particularly clear in wide modulation-doped quantum wells where there are two weakly interacting electron gases in the interface regions. Using an 8 × 8 k . p matrix approach we obtain anticrossings between interacting subbands at which the spin direction and/or wave function localization are found to be strong functions of the in-plane wave vector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call