Abstract

AbstractDespite their great promise for providing a pathway for very efficient and fast manipulation of magnetization, spin‐orbit torque (SOT) operations are currently energy inefficient due to a low damping‐like SOT efficiency per unit current bias, and/or the very high resistivity of the spin Hall materials. This work reports an advantageous spin Hall material, Pd1−xPtx, which combines a low resistivity with a giant spin Hall effect as evidenced with three independent SOT ferromagnetic detectors. The optimal Pd0.25Pt0.75 alloy has a giant internal spin Hall ratio of >0.60 (damping‐like SOT efficiency of ≈0.26 for all three ferromagnets) and a low resistivity of ≈57.5 µΩ cm at a 4 nm thickness. Moreover, it is found that the Dzyaloshinskii–Moriya interaction (DMI), the key ingredient for the manipulation of chiral spin arrangements (e.g., magnetic skyrmions and chiral domain walls), is considerably strong at the Pd1−xPtx/Fe0.6Co0.2B0.2 interface when compared to that at Ta/Fe0.6Co0.2B0.2 or W/Fe0.6Co0.2B0.2 interfaces and can be tuned by a factor of 5 through control of the interfacial spin‐orbital coupling via the heavy metal composition. This work establishes a very effective spin current generator that combines a notably high energy efficiency with a very strong and tunable DMI for advanced chiral spintronics and spin torque applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call