Abstract

For a critical binary liquid mixture where the surface tension difference between the two components is very large, the component with the lowest surface tension completely saturates the liquid-vapor surface. The variation in the local volume fraction v(z), with depth z into the liquid mixture, is described by a universal surface scaling function P±≡P±(z/ξ±), which takes differing forms in the one- (+) and two-phase (−) regions, where ξ represents the bulk correlation length. Carpenter et al. [Phys. Rev. E 59, 5655 (1999); 61, 532 (2000)] determined P± using the ellipsometric critical adsorption data of four different critical binary liquid mixtures. A deficiency of this prior study was that each of the liquid mixtures possessed at least one polar component, which could have generated distortions in the function P±(z/ξ±). In this publication, we demonstrate that P±, determined in the previous study, provides an excellent description of the nonpolar critical binary liquid mixture 1,1,2,2-tetrabromoethane+n-dodecane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.