Abstract

Here we theoretically investigate the coherent interactions between the quantum emitters with magnetic dipole transitions and subwavelength all-dielectric resonators of whispering gallery modes (WGMs). We extend a semi-analytical method which can efficiently calculate the far-field spectrum of a general hybrid system. Then, a subwavelength sphere with refractive index around n = 3.5 is chosen as the dielectric resonator. Due to the high magnetic field enhancements of the WGMs of the sphere, strong couplings between magnetic quantum emitters and subwavelength WGMs can occur, where a clear Rabi splitting appears on the extinction spectrum of the hybrid system. The match between the relaxation times of the WGMs and emitters are important to efficiently achieve a strong enough coupling. The other parameters including the order of a WGM, the radius, the refractive index, the transition dipole moment and excitation intensity are also important factors that can affect the couplings. Our results pave the way for strong interactions between light and magnetic emitters mediated by subwavelength all-dielectric resonators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.