Abstract

Dynamical chiral-symmetry-breaking in massless QED with N fermion species is studied through the numerical solution of the coupled Schwinger-Dyson (SD) equation. We have taken into account the fermion loop effect (at the 1-loop level) in the SD equation for the photon propagator through the vacuum polarization function Π(k2), with and without the standard approximation: Π((p-q)2) ≈ Π(max (p2, q2)). We have found that the scaling law is unchanged by this approximation and that, irrespective of the fermion flavor N, the dynamical fermion mass and chiral order parameter obey the same mean-field type scaling, while the quenched planar QED without the vacuum polarization (N = 0 limit) obeys the Miransky scaling with the essential singularity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call