Abstract

A general thermodynamic framework is presented for open quantum systems in fixed contact with a thermal reservoir. The first and second law are obtained for arbitrary system-reservoir coupling strengths, and including both factorized and correlated initial conditions. The thermodynamic properties are adapted to the generally strong coupling regime, approaching the ones defined for equilibrium, and their standard weak-coupling counterparts as appropriate limits. Moreover, they can be inferred from measurements involving only system observables. Finally, a thermodynamic signature of non-Markovianity is formulated in the form of a negative entropy production rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.