Abstract

Strong coupling between an atom and an electromagnetic resonator is an important condition in cavity quantum electrodynamics. While strong coupling in various physical systems has been achieved so far, it remained elusive for single atomic ions. Here, we achieve a coupling strength of 2π×(12.3±0.1) MHz between a single ^{40}Ca^{+} ion and an optical cavity, exceeding both atomic and cavity decay rates which are 2π×11.5 and 2π×(4.1±0.1) MHz, respectively. We use cavity assisted Raman spectroscopy to precisely characterize the ion-cavity coupling strength and observe a spectrum featuring the normal mode splitting in the cavity transmission due to the ion-cavity interaction. Our work paves the way towards new applications of cavity quantum electrodynamics utilizing single trapped ions in the strong coupling regime for quantum optics and quantum technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.