Abstract

We analyze the measured optical conductivity spectra using the density-functional-theory-based electronic structure calculation and density-matrix renormalization group calculation of an effective model. We show that, in contrast to a conventional description, the Bose-Einstein condensation of preformed excitons occurs in Ta_{2}NiSe_{5}, despite the fact that a noninteracting band structure is a band-overlap semimetal rather than a small band-gap semiconductor. The system above the transition temperature is therefore not a semimetal but rather a state of preformed excitons with a finite band gap. A novel insulator state caused by the strong electron-hole attraction is thus established in a real material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call