Abstract
Fourth-order strong-coupling degenerate perturbation theory is used to derive an effective low-energy Hamiltonian for the Kondo-lattice model with a depleted system of localized spins. In the strong-J limit, completely local Kondo singlets are formed at the spinful sites which bind a fraction of conduction electrons. The low-energy theory describes the scattering of the excess conduction electrons at the Kondo singlets as well as their effective interactions generated by virtual excitations of the singlets. Besides the Hubbard term, already discussed by Nozieres, we find a ferromagnetic Heisenberg interaction, an antiferromagnetic isospin interaction, a correlated hopping and, in more than one dimensions, three- and four-site interactions. The interaction term can be cast into highly symmetric and formally simple spin-only form using the spin of the bonding orbital symmetrically centered around the Kondo singlet. This spin is non-local. We show that, depending on the geometry of the depleted lattice, spatial overlap of the non-local spins around different Kondo singlets may cause ferromagnetic order. This is sustained by a rigorous argument, applicable to the half-filled model, by a variational analysis of the stability of the fully polarized Fermi sea of excess conduction electrons as well as by exact diagonalization of the effective model. A similar fourth-order perturbative analysis is performed for the depleted Anderson lattice in the limit of strong hybridization. Even in a parameter regime where the Schrieffer-Wolff transformation does not apply, this yields the same effective theory albeit with a different coupling constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.