Abstract
We study the strong coupling problem in the Horava-Melby-Thompson setup of the Horava-Lifshitz gravity with an arbitrary coupling constant $\lambda$, generalized recently by da Silva, where $\lambda$ describes the deviation of the theory in the infrared from general relativity that has $\lambda_{GR} = 1$. We find that a scalar field in the Minkowski background becomes strong coupling for processes with energy higher than $\Lambda_{\omega} [\equiv (M_{pl}/c_1)^{3/2} M_{pl}|\lambda - 1|^{5/4}]$, where generically $c_1 \ll M_{pl}$. However, this problem can be cured by introducing a new energy scale $M_{*}$, so that $M_{*} < \Lambda_{\omega}$, where $M_{*}$ denotes the suppression energy of high order derivative terms of the theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.