Abstract

The electronic structure of heavy-fermion compounds arises from the interaction of nearly localized 4f- or 5f-shell electrons (with atomic magnetic moments) with the free-electron-like itinerant conduction-band electrons. In actinide or rare-earth heavy-fermion materials, this interaction yields itinerant electrons having an effective mass about 100 times (or more) the bare electron mass. Moreover, the itinerant electrons in UPd2Al3 are found to be superconducting well below the magnetic ordering temperature of this compound, whereas magnetism generally suppresses superconductivity in conventional metals. Here we report the detection of a dispersive excitation of the ordered f-electron moments, which shows a strong interaction with the heavy superconducting electrons. This 'magnetic exciton' is a localized excitation which moves through the lattice as a result of exchange forces between the magnetic moments. By combining this observation with previous tunnelling measurements on this material, we argue that these magnetic excitons may produce effective interactions between the itinerant electrons, and so be responsible for superconductivity in a manner analogous to the role played by phonons in conventional superconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.