Abstract
These lecture notes present an introduction to the strongly correlated regime of low dimensional atomic gases. The discussion is concentrated on situations in which the strongly correlated limit is achieved by creating degeneracies in the one-particle motional states. Three different schemes of experimental relevance are analyzed: bosonic atoms in a two dimensional rapidly rotating trap, bosonic atoms in a one dimensional optical lattice, and bosonic atoms with frozen motional degrees of freedom and two internal states. The corresponding entangled multiparticle states (Laughlin liquids, Mott phases, squeezed states), and the different strongly correlated phenomena that appear (fermionization, fractional statistics) are studied. Emphasis is given to the possibility of observing novel strongly correlated phenomena as well as to the possible implementations for quantum computation and quantum information.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.