Abstract
The interplay among topology, superconductivity, and magnetism promises to bring a plethora of exotic and unintuitive behaviors in emergent quantum materials. The family of Fe-chalcogenide superconductors FeTexSe1-x are directly relevant in this context due to their intrinsic topological band structure, high-temperature superconductivity, and unconventional pairing symmetry. Despite enormous promise and expectation, the local magnetic properties of FeTexSe1-x remain largely unexplored, which prevents a comprehensive understanding of their underlying material properties. Exploiting nitrogen vacancy (NV) centers in diamond, here we report nanoscale quantum sensing and imaging of magnetic flux generated by exfoliated FeTexSe1-x flakes, demonstrating strong correlation between superconductivity and ferromagnetism in FeTexSe1-x. The coexistence of superconductivity and ferromagnetism in an established topological superconductor opens up new opportunities for exploring exotic spin and charge transport phenomena in quantum materials. The demonstrated coupling between NV centers and FeTexSe1-x may also find applications in developing hybrid architectures for next-generation, solid-state-based quantum information technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.