Abstract
The strong converse for a coding theorem shows that the optimal asymptotic rate possible with vanishing error cannot be improved by allowing a fixed error. Building on a method introduced by Gu and Effros for centralized coding problems, we develop a general and simple recipe for proving strong converse that is applicable for distributed problems as well. Heuristically, our proof of strong converse mimics the standard steps for proving a weak converse, except that we apply those steps to a modified distribution obtained by conditioning the original distribution on the event that no error occurs. A key component of our recipe is the replacement of the hard Markov constraints implied by the distributed nature of the problem with a soft information cost using a variational formula introduced by Oohama. We illustrate our method by providing a short proof of the strong converse for the Wyner-Ziv problem and strong converse theorems for interactive function computation, common randomness and secret key agreement, and the wiretap channel; the latter three strong converse problems were open prior to this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.