Abstract

The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi-ϕ-asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.