Abstract

Our aim in this paper is to introduce a modified viscosity implicit rule for finding a common element of the set of solutions of variational inequalities for two inverse-strongly monotone operators and the set of fixed points of an asymptotically nonexpansive mapping in Hilbert spaces. Some strong convergence theorems are obtained under some suitable assumptions imposed on the parameters. As an application, we give an algorithm to solve fixed point problems for nonexpansive mappings, variational inequality problems and equilibrium problems in Hilbert spaces. Finally, we give one numerical example to illustrate our convergence analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.