Abstract
In this work, we prove strong convergence on small time interval of order for arbitrarily small of the Euler-Maruyama approximation for additive Brownian motion with Hölder continuous drift satisfying a linear growth condition. The proof is based on direct estimations of functional of the Euler-Maruyama approximation. The order of convergence does not depend on the Hölder index of the drift, thus generalizing the results obtained in [10] to both Linear growth and to an optimal convergence order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.