Abstract

The paper investigates two inertial extragradient algorithms for seeking a common solution to a variational inequality problem involving a monotone and Lipschitz continuous mapping and a fixed point problem with a demicontractive mapping in real Hilbert spaces. Our algorithms only need to calculate the projection on the feasible set once in each iteration. Moreover, they can work well without the prior information of the Lipschitz constant of the cost operator and do not contain any line search process. The strong convergence of the algorithms is established under suitable conditions. Some experiments are presented to illustrate the numerical efficiency of the suggested algorithms and compare them with some existing ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call