Abstract
This article concerns bi-spatial random dynamics for the stochastic reaction-diffusion equation on a thin domain, where the noise is described by a general stochastic process instead of the usual Wiener process. A bi-spatial attractor is obtained when the non-initial state space is the p-times Lebesgue space, meanwhile, measurability of the attractor in the Banach space is proved by using measurability of both cocycle and absorbing set. Finally, the $p$-norm convergence of attractors is obtained when the thin domain collapses onto a lower dimensional domain. The method of symbolical truncation is applied to provide some uniformly asymptotic estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.