Abstract

This paper aims to investigate the numerical approximation of a general second order parabolic stochastic partial differential equation(SPDE) driven by multiplicative and additive noise. Our main interest is on such SPDEs where the nonlinear part is stronger than the linear part, usually called stochastic dominated transport equations. Most standard numerical schemes lose their good stability properties on such equations, including the current linear implicit Euler method. We discretize the SPDE in space by the finite element method and propose a novel scheme called stochastic Rosenbrock-type scheme for temporal discretization. Our scheme is based on the local linearization of the semi-discrete problem obtained after space discretization and is more appropriate for such equations. We provide a strong convergence of the new fully discrete scheme toward the exact solution for multiplicative and additive noise and obtain optimal rates of convergence. Numerical experiments to sustain our theoretical results are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.