Abstract

We consider the quintic one-dimensional nonlinear Schrödinger equation with forcing and both linear and nonlinear dissipation. Quintic nonlinearity results in multiple collapse events randomly distributed in space and time, forming forced turbulence. Without dissipation each of these collapses produces finite-time singularity, but dissipative terms prevent actual formation of singularity. In statistical steady state of the developed turbulence, the spatial correlation function has a universal form with the correlation length determined by the modulational instability scale. The amplitude fluctuations at that scale are nearly Gaussian while the large-amplitude tail of the probability density function (PDF) is strongly non-Gaussian with powerlike behavior. The small-amplitude nearly Gaussian fluctuations seed formation of large collapse events. The universal spatiotemporal form of these events together with the PDFs for their maximum amplitudes define the powerlike tail of the PDF for large-amplitude fluctuations, i.e., the intermittency of strong turbulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call