Abstract

Electrochemical ammonia synthesis by N2 fixation has proven to be a promising alternative to the energy-consuming, befouling Haber-Bosch process. Considering the low faradaic efficiency and sluggish kinetics of Nitrogen Reduction Reaction (NRR), it is significant to design a robust and selective catalyst. Herein, we demonstrate a single step in-situ nitridation method to grow cubic molybdenum nitride (γ-Mo2N) nanoparticles on a 2D hexagonal boron nitride (h-BN) sheets as a potential, cost-effective electrocatalyst for NRR, in which the selectivity for N2 was regulated by interfacially engineering the Mo2N-BN bridge. The maneuverability of h-BN sheets enabled the provocation of N-vacancies governed by the particle size, where the fine-tuning of their significance emanated the highest faradaic efficiency of 61.5 %. Moreover, such non-noble metal-based hybrids delivered a stable performance for 20 h. Therefore, our approach of designing the electronic structure of a catalyst by controlling the defects could be an effective practice for selective NRR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.