Abstract

Recently, intriguing physical properties have been unraveled in anisotropic layered semiconductors, in which the in-plane electronic band structure anisotropy often originates from the low crystallographic symmetry and thus a thickness-independent character emerges. Here, we apply high-resolution angle-resolved photoemission spectroscopy to directly image the in-plane anisotropic energy bands in monoclinic gallium telluride (GaTe). Our first-principles calculations reveal the in-plane anisotropic energy band structure of GaTe measured experimentally is dominated by a strong bulk-surface interaction rather than geometric factors, surface effect and quantum confinement effect. Furthermore, accompanied by the thickness of GaTe increasing from mono- to few-layers, the strong interlayer coupling of GaTe induces direct-indirect-direct band gap transition and the in-plane anisotropy of hole effective mass is reversed. Our results shed light on the physical origins of in-plane anisotropy of electronic structure in GaTe, providing guidance to further improving the performance of electronic and optoelectronic devices based on the layered anisotropic semiconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.