Abstract

The recent emergence of magnetic van der Waals materials allows for the investigation of current-induced magnetisation manipulation in two-dimensional materials. Uniquely, Fe3GeTe2 has a crystalline structure that allows for the presence of bulk spin–orbit torques (SOTs) that we quantify in a Fe3GeTe2 flake. From the symmetry of the measured torques, we identify current induced effective fields using harmonic analysis and find dominant bulk SOTs arising from the symmetry in the crystal structure. Our results show that Fe3GeTe2 can exhibit bulk SOTs in addition to the conventional interfacial SOTs enabling magnetisation manipulation even in thick flakes without the need for complex multilayer engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call