Abstract

The broadband optical absorption properties of silicon nanowire (SiNW) films fabricated on glass substrates by wet etching and chemical vapor deposition (CVD) have been measured and found to be higher than solid thin films of equivalent thickness. The observed behavior is adequately explained by light scattering and light trapping though some of the observed absorption is due to a high density of surface states in the nanowires films, as evidenced by the partial reduction in high residual sub-bandgap absorption after hydrogen passivation. Finite difference time domain simulations show strong resonance within and between the nanowires in a vertically oriented array and describe the experimental absorption data well. These structures may be of interest in optical films and optoelectronic device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.