Abstract

The trace distance between two quantum states, $\rho$ and $\sigma$, is an operationally meaningful quantity in quantum information theory. However, in general it is difficult to compute, involving the diagonalization of $\rho - \sigma$. In contrast, the Hilbert-Schmidt distance can be computed without diagonalization, although it is less operationally significant. Here, we relate the trace distance and the Hilbert-Schmidt distance with a bound that is particularly strong when either $\rho$ or $\sigma$ is low rank. Our bound is stronger than the bound one could obtain via the norm equivalence of the Frobenius and trace norms. We also consider bounds that are useful not only for low-rank states but also for low-entropy states. Our results have relevance to quantum information theory, quantum algorithms design, and quantum complexity theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.