Abstract
We report the study on the unique driving forces of the self-assembly of fully hydrophilic, soluble {Mo72Fe30} macroanions into single-layer, vesicle-like "blackberry" structures in water and mixed solvents. The hydrophobic interaction that is responsible for the vesicle formation of amphiphilic surfactants does not contribute to the current blackberry formation because of the absence of hydrophobic moiety. The hydrogen bond, van der Waals force, and chemical interaction only play minor roles. Laser light scattering and conductance measurements on a series of {Mo72Fe30}/ethanol/H2O solutions show that a certain amount of negative charges are necessary for the self-assembly, clearly indicating the existence of long-range attraction between macroanions, presumably due to the small counterions in between. The experimental results suggest that the charges on macroanions play a dual effect: short-range electrostatic repulsion and long-range "like-charge attraction", which is the major source of attractive force between hydrophilic macroanions, while van der Waals force, hydrogen bonds, and temporary inter-{Mo72Fe30} Fe-O-Fe chemical linking may also have minor contributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.