Abstract
Let Xi, i = 1, 2,…, be i.i.d. symmetric random variables in the domain of attraction of a symmetric stable distribution Gα with 0 < α < 2. Let Yi, i = 1, 2, …, be i.i.d. symmetric stable random variables with the common distribution Gα. It is known that under certain conditions the sequences {Xi} and {Yi} can be reconstructed on a new probability space without changing the distribution of each such that a.s. as n ∞, where α ≦ γ < 2 (see Stout [10]). We will give a second approximation by partial sums of i.i.d. stable (with characteristic exponent α*, α < α* ≦ 2) random variables Ui, i = 1, 2,…, n, and we will obtain strong upperbounds for the differences .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.