Abstract

This paper derives the strong approximation for a multiclass queueing network,where jobs after service completion can only move to a downstream service station. Job classes are partitioned into groups. Within a group, jobs are served in the order of arrival; that is, a first-in first-out (FIFO) discipline is in force, and among groups, jobs are served under a preassigned preemptive priority discipline. We obtain the strong approximation for the network through an inductive application of an input–output analysis for a single-station queue. Specifically, we show that if the input data (i.e., the arrival and the service processes) satisfy an approximation (such as the functional law-of-iterated logarithm approximation or the strong approximation), then the output data (i.e., the departure processes) and the performance measures (such as the queue length, the workload and the sojourn time processes) satisfy a similar approximation. Based on the strong approximation, some procedures are proposed to approximate the stationary distribution of various performance measures of the queueing network. Our work extends and complements the existing work of Peterson and Harrison and Williams on the feedforward queueing network. The numeric examples show that strong approximation provides a better approximation than that suggested by a straightforward interpretation of the heavy traffic limit theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.